0 Daumen
607 Aufrufe

Hey hier wieder eine Frage  von meinem Prof. ich komme aber gar nicht voran  hab auch keine Ahnung wie ich anfangen soll

könnt ihr mir bitte Helfen?

gegeben ist eine Basis B = (1,i).

Für w = a + bi ∈ C betrachten wir die Abbildung Gw : C→C, z 7→ w¯ z (konjugiert komplex).

(a) Zeigen Sie, dass Gw eine lineare Abbildung des R-Vektorraumes C ist und stellen Sie die Darstellungsmatrix MB B (Gw) auf.

(b) Sei nun w = eiα

Zeigen Sie folgendes: Für w1 := eiα/2 und w2 := ei(α/2+π/2) gilt Gw(w1)= w1 und Gw(w2)=−w1. Schließen Sie hieraus, dass Gw eine (orthogonale) Spiegelung ist. Fertigen Sie hierzu auch eine Skizze an.

Dankeschön :)

Avatar von

EDIT: Musste gerade deine Rechtschreibung verbessern. Du solltest aber die Formatierungen unbedingt noch selbst in Ordnung bringen, sonst nützt das nichts.

Ein anderes Problem?

Stell deine Frage

Ähnliche Fragen

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community