r(φ) = φ²
dr/dφ = 2φ
y = f(x(φ))
Kettenregel:
dy/dφ = dy/dx * dx/dφ
Umstellen nach dy/dx:
dy/dx = (dy/dφ)/(dx/dφ)
y = y(φ) = r(φ)sin(φ)
x = x(φ) = r(φ)cos(φ)
Produktregel:
dy/dφ = dr/dφ sin(φ) + r(φ) cos(φ)
dx/dφ = dr/dφ cos(φ) - r(φ) sin(φ)
dy/dx = (dy/dφ)/(dx/dφi) = [dr/dφ sin(φ) + r(φ) cos(φ)] / [dr/dφ cos(φ) - r(φ) sin(φ)]
dy/dx = (dy/dφ)/(dx/dφi) = [2φ sin(φ) + φ² cos(φ)] / [2φ cos(φ) - φ² sin(φ)]
φ=π/5, r(φ) = φ² = (π/5)²
dy/dx = (dy/dφ)/(dx/dφi)
= [2(π/5) sin(π/5) + (π/5)² cos(π/5)] / [2(π/5) cos(π/5) - (π/5)² sin(π/5)] ≈ 1.348
≈ 54,07 Grad