sei \(p(x)=ax^4+bx^3+cx^2+dx+e\in U\).
Aus \(p^{\prime\prime\prime}(1)=p^{\prime\prime}(1)\) folgt \(24a+6b=12a+6b+2c\), also \(c=6a\).
Aus \(p^{\prime\prime\prime}(1)=p^{\prime}(1)\) folgt \(24a+6b=4a+3b+2c+d\), also \(d=8a+3b\).
Aus \(p^{\prime\prime\prime}(1)=p(1)\) folgt \(24a+6b=a+b+c+d+e\), also \(e=9a+2b\).
Es ist also \(p(x)=ax^4+bx^3+6ax^2+(8a+3b)x+(9a+2b)\) und \(U=\operatorname{span}\{x^4+6x^2+8x+9,x^3+3x+2\}\).
MfG