$$ \int_0^1 \frac{e^x - 1}{x \sqrt{x}} \ dx = \int_0^1 \sum_{k=0}^\infty \frac{ x^{k- \frac{1}{2} } } { (k+1)! } \ dx = \int_0^1 x^{-\frac{1}{2}} \ dx + \int_0^1 \sum_{k=0}^\infty \frac{ x^{k+ \frac{1}{2} } } { (k+2)! } \ dx $$
Weiter gilt $$ \sum_{k=0}^\infty \frac{ x^{k+ \frac{1}{2} } } { (k+2)! } \le \sum_{k=0}^\infty \frac{ 1 } { (k+2)! } \le e $$
Also gilt insgesamt $$ \int_0^1 \frac{e^x - 1}{x \sqrt{x}} \ dx \le 2 + e $$