Wo liegt mein Fehler?
$$ y'\quad =\quad \frac { 1 }{ 1-x } \quad y\quad +\quad x\quad -\quad 1 $$
$$f(x) = -\frac { 1 }{ 1-x },\quad g(x) = x\quad -\quad 1$$
______
$$ F(x)\quad =\quad \int { f(x) } \quad =\quad -\int { \frac { 1 }{ 1-x } \quad =\quad -ln|1-x| } $$
$$ c(x)\quad =\quad \int { g(x){ e }^{ F(x) }dx } \quad =\quad \int { (x-1){ e }^{ -ln|1-x| }dx } \quad $$
$$ c(x)\quad =\quad \int { \frac { (x-1) }{ (1-x) } dx\quad } =\quad \int { \frac { (x-1) }{ -(x-1) } dx } \quad =\quad -x\quad +\quad { c }_{ 1 }\quad $$
______
$$ { y }_{ h }\quad =\quad { C }{ e }^{ -F(x) }\quad =\quad C{ e }^{ --ln|1-x| }\quad =\quad C(1-x)\quad $$
$$ { y }_{ s }=\quad c(x){ e }^{ -F(x) }\quad =\quad (-x\quad +\quad { c }_{ 1 })\quad { e }^{ --ln|1-x| }\quad =\quad (-x\quad +\quad { c }_{ 1 })(1-x) $$
$$ { y }_{ A }=\quad { y }_{ h }\quad +\quad { y }_{ s } = (1-x)({ C }_{ 2 }-x) $$
______
AWP y(2) = 0
y_A(2) = -(C_2-2) = -C_2 + 2 => C_2 = 2
$$ { y }_{ AWP }= (1-x)(2-x) $$
$$ { y' }_{ AWP} = 2x-3$$
__
Test:
$$ y'\quad =\quad \frac { 1 }{ 1-x } \quad y\quad +\quad x\quad -\quad 1 $$
$$ 2x-3\quad \neq\quad \frac { 1 }{ 1-x } \quad (1-x)(2-x)\quad +\quad x\quad -\quad 1 $$
$$ 2x-3\quad \neq \quad (2-x)\quad +\quad x\quad -\quad 1\quad =\quad 1$$
MFG