f(x)= x2
g(x)= -ax+2a2
Schnittpunkte
x^2 = -ax + 2a^2
x^2 + ax = 2a^2
pq-Formel oder quadratische Ergänzung
x^2 + ax + (a/2)^2 = 2a^2 + a^2/4
( x + a/2 )^2 = 9/4 * a^2 | √
x + a/2 = ± 3/2 * a
x = ± 3/2 * a - a/2
x = a
x = -2 * a
d ( x ) = x^2 - ( -ax + 2a^2 )
d ( x ) = x^2 + ax - 2a^2
Stammfunktion
D ( x ) = x^3 / 3 + ax^2 / 2 - 2a^2*x
Fläche
[ D ( x ) ] zwischen - 2a und a
(a )^3 / 3 + a*(a)^2 / 2 - 2a*2*(a) -
(-2a)^3 / 3 + a(-2a)^2 / 2 - 2a^2*(-2a)
a^3 / 3 + a^3 / 2 - 2a^3 - ( -8a^3 / 3 + 4a^3 / 2 + 4a^3 )
a^3 / 3 + a^3 / 2- 2a^3 + 8a^3 / 3 - 2a^3 - 4a^3
9 a^3 / 3 + a^3 / 2 - 8a^3
- 9 / 2 * a^3
- 9 / 2 * a^3 = 4.5
a = -1
Alle Angaben ohne Gewähr.
Bitte alles überprüfen.