d(x) = (x^2 - 2·x + 2) - (a·x + 2) = x^2 - a·x - 2·x
D(x) = 1/3·x^3 - 1/2·x^2·(a + 2)
Schnittstellen d(x) = 0
x^2 - a·x - 2·x = x·(x - a - 2) = 0 --> x = 0 oder x = a + 2
∫ (0 bis a + 2) d(x) dx = D(a + 2) - D(0) = -1/6·(a + 2)^3 = ± 36 --> a = 4 oder a = -8