Hier eventuell der 2. Teil
|A ∪ B ∪ C| = |(A ∪ B) ∪ C|
|A ∪ B ∪ C| = |A ∪ B| + |C| - |(A ∪ B) ∩ C|
|A ∪ B ∪ C| = |A| + |B| - |A ∩ B| + |C| - |(A ∪ B) ∩ C|
|A ∪ B ∪ C| = |A| + |B| - |A ∩ B| + |C| - |(A ∩ C) ∪ (B ∩ C)|
|A ∪ B ∪ C| = |A| + |B| - |A ∩ B| + |C| - (|A ∩ C| + |B ∩ C| - |(A ∩ C) ∩ (B ∩ C)|)
|A ∪ B ∪ C| = |A| + |B| - |A ∩ B| + |C| - |A ∩ C| - |B ∩ C| + |(A ∩ C) ∩ (B ∩ C)|
|A ∪ B ∪ C| = |A| + |B| - |A ∩ B| + |C| - |A ∩ C| - |B ∩ C| + |A ∩ B ∩ C|
|A ∪ B ∪ C| = |A| + |B| + |C| - |A ∩ B| - |A ∩ C| - |B ∩ C| + |A ∩ B ∩ C|