„Im Schulbetrieb werden ja üblicherweise zig Aufgaben als Beispiel vorgetanzt - wie hilfreich diese Methode ist, sieht man hier ja überdeutlich. Solange nicht wirklich verstanden wird, was zu tun ist, bleibt das Abpinnen von Lösungen völlig zweckfrei.“
Das ist ein grosses Problem finde ich, ich wiederhole jetzt das Jahr, und bin ja mit dem meisten, aber vor allem dem Stoff jetzt in der Anfangsphase, bestens vertraut und sehe daher jetzt öfters zu als fragen zu stellen. Andere Schüler fragen, aber auch hier zeigt die Lehrperson die Antwort anhand eines anderen Beispiels. Er verrät aber nicht, wieso das so ist. Ich lerne viel mehr hier als im Unterricht.
Zudem kam mir ein Buch in die Hand, es ist zwar mehr Naturwissenschafts & Ingenieursmathematik aber es erklärt extrem gut. Zum beispiel hörte ich in der Schule, dass es Intervalle gibt. Aber nicht das ein Intervall durch „Randpunkte“ begrenzt ist. Ok, nur schon weil ich das jetzt weiss werde ich nie vergessen, wieso man beim bestimmen des globalen Extremums in einem Intervall die Randextrema untersuchen muss.
Anderes Beispiel, wieso redet man nicht von Abbildungen wenn man zum Beispiel eine Funktion einführt? Das ist viel klarer, als wie du sagst, Aufgaben vorzurechnen. Denn es werden sowieso solche Zeichen in Prüfungen verwendet wie untenstehende:
f: R→R
x ↦ f(x)