Falls "Induktion" tatsächlich gar nicht in der Tag-Liste stehen sollte, dann geht es so :
∑ [k=1 .. n] k·5^k = f(5) für f(x) = ∑ [k=1 .. n] k·x^k
f(x) = ∑ [k=1 .. n] k·x^k = ∑ [k=0 .. n] k·x^k
= x·∑ [k=0 .. n] k·x^{k-1} = x·∑ [k=0 .. n] (x^k)'
= x·(∑ [k=0 .. n] x^k)' = x·((x^{n+1}-1)/(x-1))'
= x·((n+1)·x^n·(x-1) - (x^{n+1}-1)) / (x-1)^2
f(5) = 5·((n+1)·5^n·4 - 5^{n+1} + 1) / 4^2
= ( (n+1)·4·5^{n+1} - 5·5^{n+1} + 5 ) / 16
= ( 5^{n+1}·(4n+4 - 5) ) / 16 + 5/16