Spiegelung am Beispiel d=3, R3 :
Abstand Punkt x - Ebene, n ={n1,n2,n3} normiert |n|=1
Spiegelung: x' = x - 2 (Abstand x zur Ebene) Richtung Normalenvektor
{x1,x2,x3} - 2 ((n1,n2,n3) (x1,x2,x3)) {n1,n2,n3}
\(\small \left\{ -2 \; n1^{2} \; x1 - 2 \; n1 \; n2 \; x2 - 2 \; n1 \; n3 \; x3 + x1, -2 \; n1 \; n2 \; x1 - 2 \; n2^{2} \; x2 - 2 \; n2 \; n3 \; x3 + x2, -2 \; n1 \; n3 \; x1 - 2 \; n2 \; n3 \; x2 - 2 \; n3^{2} \; x3 + x3 \right\} \)
===>
\(\small S_3=\left(\begin{array}{rrr}-2 \; n1^{2} + 1&-2 \; n1 \; n2&-2 \; n1 \; n3\\-2 \; n1 \; n2&-2 \; n2^{2} + 1&-2 \; n2 \; n3\\-2 \; n1 \; n3&-2 \; n2 \; n3&-2 \; n3^{2} + 1\\\end{array}\right)\)
\(\small n \, := \, \left( \begin{array}{r}0 \\ \frac{-1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \end{array} \right) \) ===> \(\small S_3 \, := \, \left(\begin{array}{rrr}1&0&0\\0&\frac{3}{5}&\frac{4}{5}\\0&\frac{4}{5}&\frac{-3}{5}\\\end{array}\right)\) ===> \(\small S_3 \left( \begin{array}{r}-1 \\-1 \\ 5 \end{array} \right) = \left( \begin{array}{r}-1\\ \frac{17}{5}\\ \frac{-19}{5} \end{array} \right)\)
Projektion: x' = x - (Abstand x zur Ebene) Richtung Normalenvektor
analog