(cos(t) - t*sin(t))2 =cos^2(t) -2 *t *cos(t) sin(t) + t^2 sin^2(t)
(sin(t ) + t*cos(t))2 =sin^2(t) +2 *t sin(t) cos(t) +t^2 sin^2(t)
insgesamt:
= √(cos^2(t) -2 *t *cos(t) sin(t) + t^2 sin^2(t) +sin^2(t) +2 *t sin(t) cos(t) +t^2 sin^2(t) +1)
=√(cos^2(t) + t^2 sin^2(t) +t^2 cos^2(t) + sin^2(t) +1)
allgemein gilt: sin^2(t) +cos^2(t)=1
---->
=√(cos^2(t) + sin^2(t) + t^2 sin^2(t) +t^2 cos^2(t) +1)
=√ 1 + t^2(sin^2(t) +cos^2(t) +1)
=√ (2 +t^2)