0 Daumen
497 Aufrufe

Zeichnen Sie zwei Kreise mit den Radien 5 cm und 3 cm, deren Mittelpunkte den Abstand 10 cm haben. Bestimmen Sie dann auf konstruktivem Wege sämtliche gemeinsamen Tangenten.
Hinweis: Wenn z. B. r2 ≥ r1 gilt, dann sind die gesuchten Tangenten parallel zu den Tangenten von M1 an die Kreise k(M2,r2-r1)bzw. k(M2,r1+r2), wobei für r2 = r1 der Kreis k(M2,r2 - r1) zum Punkt entartet und die Tangente die Gerade g(M1,M2) wird.

Avatar von

2 Antworten

0 Daumen

großer Kreis um M1 und r=5 ; kleiner Kreis um M2 und r=3  dann Hilfskreis KH um M1 mit r=2 zeichnen. Dann Mittelpunkt von M1 nach M2 bestimmen: ist Z; dann um Z mit Radius 5  Kreis ziehen.  Die Schnittpunkte vom diesem Kreis und und dem Hilfskreis sind B1 und B2.  Dann M2B1 und M2B2 zeichnen.  Zu den beiden Strecken jeweils eine Parallele im Abstand 3cm  zeichnen;das sind die gesuchten äußeren Tangenten.

Avatar von 289 k 🚀
0 Daumen

Zeichne zwei Kreise K5 bzw. K3 mit den Radien 5 cm und 3 cm, deren Mittelpunkte M5 bzw. M3 den Abstand 10 cm haben.Zeichne um M5 einen Kreis K2 mit r=5 - 3 =2. Der Thaleskreis über M3M5 schneidet K2 in A.M3A ist bereits parallel zu der gesuchten Tangente. Die Senkrechte zu M3A in M3 schneidet K3 in B. Die Parallele durch B zu M3A ist die gesuchte Tangente.

Avatar von 123 k 🚀

Ein anderes Problem?

Stell deine Frage

Ähnliche Fragen

0 Daumen
1 Antwort
0 Daumen
1 Antwort
0 Daumen
1 Antwort
0 Daumen
2 Antworten

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community