Die Funktion hat keine Nullstellen
$$ 0=2k\cdot(e^{kx}+e^{-kx})^{-1}=\frac{2k}{e^{kx}+e^{-kx}}\Leftrightarrow\frac{2ke^{kx}}{e^{2kx}+1}=0\Leftrightarrow 2ke^{kx}=0, $$bis auf den Fall k=0, wo die Funktion nur eine konstante Nullfunktion ist, sprich sie liegt in der x-Achse und hat unendlich viele Nullstellen.