du könntest doch zunächst mal das Integral im Exponenten bestimmen. Also:
$$ \int_x^a{h(y)}dy=H(a)-H(x) $$
Dann hat man
$$ \int_{a_0}^a{g(x)e^{H(a)-H(x)}dx}=e^{H(a)-H(x)} \cdot \int_{a_0}^a (g(x))dx=e^{H(a)-H(x)} \cdot [G(a)-G(a_0)] $$
Jetzt nach Produkt -und Kettenregel ableiten:
$$ \frac{\partial}{\partial a}\int_{a_0}^a{g(x)e^{\int_x^a{h(y)}dy}dx}=\frac{\partial}{\partial a} \Bigg(e^{H(a)-H(x)} \cdot [G(a)-G(a_0)] \Bigg)\\=e^{H(a)-H(x)} \cdot \Bigg(H'(a)\cdot \Big(G(a)-G(a_0) \Big)+G'(a) \Bigg) $$