H1: p < 0,03
Dann würde ich p ≥ 0,03 als Nullhypothese verwenden. Auf die Berechnung hat das aber keinen Einfluss.
PH0:(Entscheidung für H1 ) = F(300;0,03;4) = 0,05243
Das widerspricht α = 0,05.
Grund dafür ist, dass die Laplace-Bedingung σ > 3 nicht erfüllt ist. Deshalb darfst du den mit den σ-Regeln ermittelten Ablehnungsbereich nicht einfach so übernehmen, sondern musst nachbessern. Die σ-Regeln dienen in diesem Fall nur als Orientierung, wo ungefähr der Ablehnungsbereich zu finden ist.
Und wie ich dann den Fehler 2.Art bestimme weiß ich leider nicht
Den kann man nicht berechnen.
Wenn Ja warum nicht?
Fehler zweiter Art ist, die Nullhypotese wird beibehalten, obwohl sie falsch ist.
Die Nullhypotese wird beibehalten, wenn das Ergebnis im Annahmebereich liegt.
Die Wahrscheinlichkeit, im Annahmebereich zu landen, kann nicht berechnet werden, weil man das korrekte p nicht kennt. Das p = 0,03 aus der Nullhypothese darf man nicht verwenden, da es ja falsch ist, wenn ein Fehler zweiter Art eingetreten ist.
Stattdessen kann man die sogenannte Operationscharkteristik angeben. Das ist eine Funktion, die als Eingabe den tatsächlichen Wert für p bekommt und als Ausgabe den Fehler zweiter Art liefert. Das ist aber zumindest in NRW nicht mehr Bestandteil des Lehrplans an Schulen.