Eine Funktion von Grad 3 läuft durch die Punkte (0|2) und (1|1). Sie hat in (-2|-1) einen Extrempunkt
Eine ganzrationale Funktion von Grad 3
hat eine Gleichung der Art f(x) = ax^3 + bx^2 + xc + d
läuft durch die Punkte (0|2) und (1|1) heißt: f(0)=2 und f(1)=1
Sie hat in (-2|-1) einen Extrempunkt heißt f(-2)=-1 und
f ' (-2) = 0 (notw. Bed. für Extrema).
Bilde mit dem Ansatz f(x) = ax^3 + bx^2 + xc + d, also
f ' (x) = 3ax^3 + 2bx + c
und f(0)=2 und f(1)=1 und f(-2)=-1 und f ' (-2) = 0
ein Gleichungssystem und berechne damit abcd.