Blau: f(x)=x^3-2x^2 ; Schwarz: g(x)=x^3-8x^2+20x-13
Um durch Verschiebungen aus dem blauen Graphen, den schwarzen zu machen, musst du dir einmal klar machen, wie man horizontal (entlang der Abzissenachse) bewegt. Man bewegt nach rechts, indem man die Operation \(y=f(x-c)\) durchführt. Dafür guckst du dir den lokalen Hochpunkt an, der bei dem schwarzen Graphen bei H(2|3) liegt, daraus folgerst du, dass \(a\) gleich zwei ist.
Dasselbe gilt für die vertikale Verschiebung entlang der Ordinantenachse, du orientierst dich am \(y\)-Wert des Hochpunkts H(2|3) - das ist dann dein \(b\). Du hast also die Funktion:$$f(x)=\left(x-2\right)^3-2\left(x-2\right)^2+3$$