a) f(K,L)= 3*K^{0,5}*L^{0,5}
Beweis: f(2*K,2*L)= 3*(2*K)^{0,5}*(2*L)^{0,5}=3*2^{0,5}*K^{0,5}*2^{0,5}*L^{0,5}=2^{0,5}*2^{0,5}*3*K^{0,5}*L^{0,5}
=2^{0.5+0.5}*3*K^{0,5}*L^{0,5}=2*f(K,L)
=> konstante Skalenerträge
b) f(K,L)= 3K^(0,5)*L^(3/2)
Beweis:
f(2*K,2*L)=3*(2*K)^{0,5}*(2*L)^{3/2}=3*2^{0,5}*K^{0,5}*2^{3/2}*L^{3/2}=2^{0,5}*2^{2/3}*3*K^{0,5}*L^{2/3}
=2^{0.5+2/3}*3*K^{0,5}*L^{2/3}=2^{0.5+2/3}*f(K,L)
=> steigende Skalenerträge, da 0.5+2/3 > 1