Hi,
das ist eigentlich nur die Quotientenregel (oder Produktregel, wenn diese Dir lieber ist) und Fleißarbeit :).
Quotientenregel allgm:
$$y' = \frac{u'\cdot v - u\cdot v'}{v^2}$$
mit \(y = \frac uv\)
Das ist dann hier:
$$f'(x) = \frac{(2x-2)(x+1)^2 - (x^2-2x)\cdot2(x+1)}{(x+1)^4}$$
Nun mit (x+1) kürzen und zusammenfassen:
$$f'(x) = \frac{4x-2}{(x+1)^3}$$
Das ganze dann nochmals. Ich komme auf:
$$f''(x) = \frac{10-8x}{(x+1)^4}$$
Grüße