a n = ( n + 1 ) - ( n - 1 ) 2 / ( n + 1 )
= ( n + 1 ) - ( n 2 - 2 n + 1 ) / ( n + 1 )
= ( n + 1 ) - ( ( n 2 + 2 n + 1 ) - 4 n ) / ( n + 1 )
= ( n + 1 ) - ( ( n + 1 ) ² - 4 n ) / ( n + 1 )
= ( n + 1 ) - ( ( n + 1 ) - 4 n / ( n + 1 ) )
= 4 n / ( n + 1 )
= 4 / ( 1 + ( 1 / n ) )
also:
lim n → ± ∞ a n
= lim n → ± ∞ 4 / ( 1 + ( 1 / n ) ) = 4 / 1 = 4