Vielleicht könnte mir jemand beim beantworten dieser Fragen helfen:
Aufgabenstellung:
Die Kosten für die Herstellung einer Menge x (in 1'000 Stück) eines Produktes belaufen sich (in Fr.) auf:
K(x) = 30x³ - 250x² + 1'200x + 10'000 .
Die Einnahmen (in Fr.) für eine verkaufte Menge x (in 1'000 Stück) dieses Produkts betragen:
E(x) = 8'000x - 600x² .
Bei den folgenden Fragestellungen soll davon ausgegangen werden, dass stets die gesamte Produktion verkauft werden kann.
Aufgabe:
a) Welcher Gewinn ergibt sich aus der Produktion von 5'000 Stück des Produkts?
b) Welche Funktion G(x) beschreibt den Gewinn (in Fr.) für eine produzierte Menge x (in 1'000 Stück)?
c) In welchem Bereich muss die produzierte Menge liegen, damit Gewinn erwirtschaftet wird?
d) Bei welcher produzierten Stückzahl ist der Gewinn maximal und wie gross ist dieser maximale Gewinn?
Ich hoffe jemand kann mir da weiterhelfenund bin dafür sehr dankbar.
LG