Aufgabe: Es ist 3x+3=3(x+1). Nutze diesen Zusammenhang zur Lösung der Gleichung.
a) 1/(x+1)+2/(3x+3)=4
Ich habe keine Ahnung wie ich das machen soll.
Muss ich da zuerst mit x+1und dann 3x+3 multiplizieren?
$$ \frac{1}{(x + 1)} + \frac{2}{(3x + 3)} = 4 $$
$$ \frac{3}{3 * (x + 1)} + \frac{2}{(3x + 3)} = 4 $$
wir wissen, dass 3 * (x + 1) = 3x + 3, also haben die beiden Brüche einen gemeinsamen Nenner:
$$ \frac{5}{(3x + 3)} = 4 $$
$$ 5 = 4 * (3x + 3) $$
$$ 5 = 12x + 12 $$
$$ x = - \frac{7}{12}$$
1/(x+1)+ 2/(3(x+1)) = 4
HN = 3(x+1)
3+2 = 4*3(x+1)
5= 12x+12
12x = -7
x= -7/12
1/(x+1) + 2/(3x+3) = 4
1/(x+1) + (2/3)/(x+1) = 4
(5/3)/(x+1) = 4
5/12 = x+1
...
Ein anderes Problem?
Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos