Der Symmetrie halber, gilt \(\colorbox{#FCC}{ $ \Phi(-z)=1-\Phi(z) $}\). Du kannst also vereinfachen:
$$\Phi\left(\frac{10}{\sigma}\right)+\Phi\left(\frac{10}{\sigma}\right)-1=0.8$$$$2\Phi\left(\frac{10}{\sigma}\right)=1.8$$$$\Phi\left(\frac{10}{\sigma}\right)=0.9 \quad |\Phi^{-1}(...)$$$$\frac{10}{\sigma}=1.282 \Longleftrightarrow \sigma=\frac{10}{1.282}≈ 7.8$$
Bemerkung:
$$ \begin{aligned}\Phi\left(\frac{10}{\sigma}\right)-\Phi\left(-\frac{10}{\sigma}\right)=\Phi\left(\frac{10}{\sigma}\right)-\colorbox{#FCC}{ $ \ \left(1-\Phi\left(\frac{10}{\sigma}\right)\right)\ \, $} \\ \quad \quad \quad \quad \quad \quad=\Phi\left(\frac{10}{\sigma}\right)+\Phi\left(\frac{10}{\sigma}\right)-1\end{aligned} $$