Aloha :)
Deine Idee mit der Vektoranalysis ist gut. Setze$$\vec r(x)=\left(\begin{array}{c}x\\ f(x)\end{array}\right)$$und nimm an, wir hätten \(x=x(s)\) in Abhängigkeit von der Bogenlänge \(s\) ausgedrückt, dann ist der Betrag der Ableitung von \(\vec r\) nach \(s\) gleich 1 und mit der Kettenregel folgt:
$$1=\frac{\left|d\vec r(x(s))\right|}{ds}=\frac{\left|d\vec r(x)\right|}{dx}\cdot\frac{dx}{ds}\;\;\Rightarrow\;\;\frac{ds}{dx}=\frac{\left|d\vec r(x)\right|}{dx}=\left|\left(\begin{array}{c}1\\ f'(x)\end{array}\right)\right|=\sqrt{1+f'(x)^2}$$$$\frac{d\vec r}{ds}=\frac{d\vec r(x(s))}{ds}=\left(\begin{array}{c}1\\ f'(x)\end{array}\right)\cdot\frac{1}{\sqrt{1+f'(x)^2}}$$Der Tangenteneinheistvektor ist also:$$\vec t(x)=\frac{1}{v(x)}\left(\begin{array}{c}1\\ f'(x)\end{array}\right)\quad;\quad v(x):=\frac{ds}{dx}=\sqrt{1+f'(x)^2}$$
Da die Ableitung eines Einheitsvektors stets senkrecht auf diesem steht, liegt die Ableitung des Tangenteneinheitsvektors nach der Bogenlänge \(s\) in Krümmungsrichtung. Der Normalenvektor ist daher:
$$\vec n=\frac{d\vec t}{ds}=\frac{d\vec t}{dx}\cdot\frac{dx}{ds}=\frac{1}{v(x)}\cdot\frac{d\vec t}{dx}=\frac{1}{v(x)}\cdot\left(\begin{array}{c}-\frac{v'(x)}{v^2(x)}\\\frac{f''(x)v(x)-f'(x)v'(x)}{v^2(x)}\end{array}\right)$$$$\phantom{\vec n}=\frac{1}{v^3(x)}\cdot\left(\begin{array}{c}-v'(x)\\f''(x)v(x)-f'(x)v'(x)\end{array}\right)$$Die Ableitung von \(v(x)\) ausrechnen$$v'(x)=\frac{d}{dx}\left(\sqrt{1+f'(x)^2}\right)=\frac{2f'(x)f''(x)}{2\sqrt{1+f'(x)^2}}=\frac{f'(x)f''(x)}{v(x)}$$und einsetzen liefert weiter:$$\vec n=\frac{1}{v^3(x)}\cdot\left(\begin{array}{c}-\frac{f'(x)f''(x)}{v(x)}\\f''(x)v(x)-\frac{f'(x)^2f''(x)}{v(x)}\end{array}\right)$$$$\phantom{\vec n}=\frac{1}{v^4(x)}\cdot\left(\begin{array}{c}-f'(x)f''(x)\\f''(x)v^2(x)-f'(x)^2f''(x)\end{array}\right)$$$$\phantom{\vec n}=\frac{1}{v^4(x)}\cdot\left(\begin{array}{c}-f'(x)f''(x)\\f''(x)\left(1+f'(x)^2\right)-f'(x)^2f''(x)\end{array}\right)=\frac{1}{v^4(x)}\cdot\left(\begin{array}{c}-f'(x)f''(x)\\f''(x)\end{array}\right)$$Der Betrag dieses Vektors \(\vec n\) ist die gesuchte Krümmung:$$\kappa=\frac{1}{v^4(x)}\cdot|f''(x)|\cdot\left|\left(\begin{array}{c}-f'(x)\\1\end{array}\right)\right|=\frac{1}{\left(1+f'(x)^2\right)^2}\cdot|f''(x)|\cdot\sqrt{1+f'(x)^2}$$$$\kappa=\frac{|f''(x)|}{\left(\sqrt{1+f'(x)^2}\right)^3}$$Mein Ergebnis sieht etwas anders aus als das, was du zeigen sollst. Schau mal bitte, ob du dich vielleicht bei deiner Formel vertippt hast.