Aloha :)
Hier handelt es sich um ein normalverteiltes Problem. Wir wissen, dass in 2,5% der Fälle weniger als 0,96 Liter Milch und in 3,6% der Fälle mehr als 1,05 Liter Milch abgefüllt werden. Einer Tabelle zur Standard-Normalverteilung \(\Phi(z)\) entnehmen wir:$$\Phi(-1,95996)=2,5\%\quad;\quad\Phi(1,799118)=96,4\%=1-3,6\%$$und schließen daraus:$$\mu-1,95996\sigma=0,960\quad;\quad\mu+1,799118\sigma=1,050$$Subtrahiert man die linke von der rechten Gleichung erhält man \(3,759082\,\sigma=0,09\) bzw. \(\sigma=0,023942\). Das in eine der beiden Gleichungen eingesetzt ergibt noch \(\mu=1,006925\). Zusammen also:$$\mu=1,006925\quad;\quad\sigma=0,023942$$Nun können wir die Wahrscheinlichkeit \(p\) für eine Füllmenge zwischen 0,98 und 1,02 Liter aus einer \(\Phi(z)\)-Tabelle bestimmen:
$$p=\Phi\left(\frac{1,02-\mu}{\sigma}\right)-\Phi\left(\frac{0,98-\mu}{\sigma}\right)=\Phi(0,546091)-\Phi(-1,12461)$$$$\phantom{p}=0,707498-0,130377=57,7122\%$$