Aloha :)
Zum Beweis von solchen Winkelfunktions-Beziehungen sind die folgenden 3 Regeln sehr hilfreich:
(1) Trigonometrischer Pythagoras: \(\sin^2\alpha+\cos^2\alpha=1\)
(2) Additionstheorem für Cosinus: \(\,\cos(\alpha\pm\beta)=\cos\alpha\cos\beta\mp\sin\alpha\sin\beta\)
(3) Additionstheorem für Sinus: \(\;\;\;\;\sin(\alpha\pm\beta)=\sin\alpha\cos\beta\pm\cos\alpha\sin\beta\)
Wenn ich im Folgenden eine dieser Regeln anwende, schreibe ich die Nummern über das Gleichheitszeichen:
zu d)$$\frac{1}{\cos^2\alpha}\stackrel{(1)}{=}\frac{\cos^2\alpha+\sin^2\alpha}{\cos^2\alpha}=1+\frac{\sin^2\alpha}{\cos^2\alpha}=1+\tan^2\alpha$$
zu c)$$\sqrt{\frac{1-\cos\alpha}{2}}=\sqrt{\frac{1-\cos\left(\frac{\alpha}{2}+\frac{\alpha}{2}\right)}{2}}\stackrel{(2)}{=}\sqrt{\frac{1-\left(\cos^2\frac{\alpha}{2}-\sin^2\frac{\alpha}{2}\right)}{2}}$$$$\stackrel{(1)}{=}\sqrt{\frac{\left(\sin^2\frac{\alpha}{2}+\cos^2\frac{\alpha}{2}\right)-\left(\cos^2\frac{\alpha}{2}-\sin^2\frac{\alpha}{2}\right)}{2}}=\sqrt{\frac{2\sin^2\frac{\alpha}{2}}{2}}=\sin\frac{\alpha}{2}$$
zu h)$$\sin\alpha+\sin\left(\alpha+\frac{2\pi}{3}\right)+\sin\left(\alpha+\frac{4\pi}{3}\right)$$$$\stackrel{(3)}{=}\sin\alpha+\left(\sin\alpha\,\underbrace{\cos\frac{2\pi}{3}}_{=-\frac{1}{2}}+\cos\alpha\,\underbrace{\sin\frac{2\pi}{3}}_{=\sqrt{\frac{3}{4}}}\right)+\left(\sin\alpha\,\underbrace{\cos\frac{4\pi}{3}}_{=-\frac{1}{2}}+\cos\alpha\,\underbrace{\sin\frac{4\pi}{3}}_{=-\sqrt{\frac{3}{4}}}\right)$$$$=\sin\alpha+\sin\alpha\cdot\left(-\frac{1}{2}-\frac{1}{2}\right)+\cos\alpha\cdot\left(\sqrt{\frac{3}{4}}-\sqrt{\frac{3}{4}}\right)=\sin\alpha-\sin\alpha=0$$