Die Vorstellung bei einer Cauchy-Folge ist ja, dass die Folgenglieder immer dichter zusammenrücken. Das legt die Definition nahe:
Eine Folge \((a_n)\subset \mathbb{R}\) heißt Cauchy-Folge, falls für alle \(\varepsilon >0\) ein \(n_0\) exisitiert, so dass für alle \(n,m\geq n_0\) gilt: \(|a_n-a_m|<\varepsilon\).
Sei also ein \(\varepsilon >0\) gegen. Weiter folgt für alle \(n,m\geq n_0\):$$|a_n-a_m|=\left |\frac{n}{n+1}-\frac{m}{m+1}\right |$$$$=\left | \frac{n-m}{(m+1)(n+1)}\right |=\left | \frac{n-m}{(m+1)(n+1)}\right |=\frac{|n-m|}{(m+1)(n+1)}<\varepsilon$$ Unterscheide nun in die Fälle \(n>m\) und \(n<m\).
Das \(n_0\) muss noch bestimmt werden. Das ist meine typische Beweisskizze. Auf dem Blatt lasse ich dafür noch Platz.
Beispiel: \(n>m\):$$\frac{|n-m|}{(m+1)(n+1)}\leq \frac{n}{(m+1)(n+1)}\leq \frac{n+1}{(m+1)(n+1)}=\frac{1}{m+1}\leq \frac{1}{m}<\varepsilon$$ Dann wählst du \(n_0:=1/\varepsilon\).
Analog für \(n<m\).