Aufgabe:
In einer Umfrage wurden 1000 Schüler befragt.
2% gaben an, sich nie gestresst zu fühlen.
40% gaben an, sich häufig gestresst zu fühlen.
6% gaben an, sich immer gestresst zu fühlen.
Berechne die Anzahl an SuS die man mindestens befragen muss, damit man mit einer Wahrscheinlichkeit von mindestens 90% auf mindestens eine Person trifft, die sich nie gestresst fühlt.
Ansatz:
gesucht: n
gegeben: p=0,02 und k>=1
P(X=k)=(n über k) * p^k * (1-p)^(n-k)
0,9 = (n über 1) * 0,2 * 0,8^(n-1)
0,9 = 0,2n * 0,8^(n-1)
Problem: Wie löse ich das jetzt auf? Ist soweit überhaupt alles richtig?
Ich bedanke mich herzlich im Voraus