Aloha :)
Der Weg \(W\) ist ein Kreis mit Radius \(\sqrt3\). Dein Kommilitone hat offenbar irgendwas zwischen Umfang und Fläches dieses Kreises \((2\pi\cdot3)\) berechnet, aber vermutlich nicht das gesuchte Integral. Wir berechnen allgemein das Integral entlang eines geschlossenen Weges \(C\) von \((x_0,y_0)\) nach \((x_0,y_0)\) über das gegebene Vektorfeld:
$$\oint_C\left(\begin{array}{c}ye^{xy}+2xy^2\\xe^{xy}+2x^2y\end{array}\right)\,d\vec r=\oint_C\left(\begin{array}{c}\partial_x(e^{xy}+x^2y^2)\\\partial_y(e^{xy}+x^2y^2)\end{array}\right)\,d\vec r=\oint_C\frac{\partial}{\partial \vec r}\left(e^{xy}+x^2y^2\right)\,d\vec r$$$$=\left[e^{xy}+x^2y^2\right]_{(x_0,y_0)}^{(x_0,y_0)}=0$$Weil sich das gegebene Vektorfeld als Gradient eines Skalarfeldes entpuppt, ist das Integral über jeden geschlossenen Weg gleich Null.