Aloha :)
$$0=\frac{2x-1}{x+2}-\frac{22-7x}{2-x}-\frac{6x-6}{3x^2-12}$$$$\phantom{0}=\frac{2x-1}{x+2}+\frac{22-7x}{x-2}-\frac{2x-2}{x^2-4}$$$$\phantom{0}=\frac{2x-1}{x+2}+\frac{22-7x}{x-2}-\frac{2x-2}{(x-2)(x+2)}$$$$\phantom{0}=\frac{(2x-1)(x-2)}{(x+2)(x-2)}+\frac{(22-7x)(x+2)}{(x-2)(x+2)}-\frac{2x-2}{(x-2)(x+2)}$$$$\phantom{0}=\frac{2x^2-x-4x+2}{(x+2)(x-2)}+\frac{22x-7x^2+44-14x}{(x-2)(x+2)}-\frac{2x-2}{(x-2)(x+2)}$$$$\phantom{0}=\frac{-5x^2+x+48}{(x+2)(x-2)}$$Die Nullstellen findest du, indem du den Zähler gleich \(0\) setzt:
$$\left.-5x^2+x+48=0\quad\right|\;:(-5)$$$$\left.x^2-\frac{1}{5}x-\frac{48}{5}=0\quad\right.$$$$x_{1,2}=\frac{1}{10}\pm\sqrt{\frac{1}{100}+\frac{48}{5}}=\frac{1}{10}\pm\sqrt{\frac{961}{100}}=\frac{1}{10}\pm\frac{31}{10}$$$$x_1=-3\quad;\quad x_2=3,2$$