f(x) = 2x / (x2 + 1)2
(u/v)' = ( u'v - uv' )/v2
u = 2x
u' = 2
v = (x2 + 1)2 = x4 + 2x2 + 1
v' = 4x3 + 4x
v2 = (x2 + 1)4
Alles einsetzen ergibt
f'(x) = [ 2 * (x2 + 1)2 - 2x * (4x3 + 4x) ] / (x2 + 1)4
= [2 * (x2 + 1)2] / (x2 + 1)4 - [8x4 - 8x2] / (x2 + 1)4
= [2 * (x2 + 1)2] / (x2 + 1)4 - 8x2 * (x2 + 1) / (x2 + 1)4
= 2 / (x2 + 1)2 - 8x2 / (x2 + 1)3
Besten Gruß