Aloha :)
$$s_n^2=\frac{1}{n-1}\sum\limits_{i=1}^n\left(x_i-\overline x_n\right)^2=\frac{1}{n-1}\sum\limits_{i=1}^n\left(x_i^2-2x_i\overline x_n+(\overline x_n)^2\right)$$$$\phantom{s_n^2}=\frac{1}{n-1}\left(\sum\limits_{i=1}^nx_i^2-2\overline x_n\sum\limits_{i=1}^nx_i+\sum\limits_{i=1}^n(\overline x_n)^2\right)$$$$\phantom{s_n^2}=\frac{n}{n-1}\left(\underbrace{\frac{1}{n}\sum\limits_{i=1}^nx_i^2}_{=\overline{(x^2)}_n}-2\overline x_n\cdot\underbrace{\frac{1}{n}\sum\limits_{i=1}^nx_i}_{=\overline x_n}+\underbrace{\frac{1}{n}\sum\limits_{i=1}^n(\overline x_n)^2}_{=(\overline x_n)^2}\right)$$$$\phantom{s_n^2}=\frac{n}{n-1}\left(\overline{(x^2)}_n-2(\overline x_n)^2+(\overline x_n)^2\right)=\frac{n}{n-1}\left(\overline{(x^2)}_n-(\overline x_n)^2\right)$$