Ind.Ann.:
(1+\( \frac{1}{n+1} \))(1+\( \frac{1}{n+2} \))...(1+\( \frac{1}{2n-2} \))(1+\( \frac{1}{2n-1} \))(1+\( \frac{1}{2n} \))=(2-\( \frac{1}{n+1} \))
Ind.Schritt:n→n+1
(1+\( \frac{1}{n+2} \))(1+\( \frac{1}{n+3} \))...(1+\( \frac{1}{2n} \))(1+\( \frac{1}{2n+1} \))(1+\( \frac{1}{2n+2} \))=x
(1+\( \frac{1}{n+1} \))(1+\( \frac{1}{n+2} \))(1+\( \frac{1}{n+3} \))...(1+\( \frac{1}{2n} \))(1+\( \frac{1}{2n+1} \))(1+\( \frac{1}{2n+2} \))=(1+\( \frac{1}{n+1} \))x
(1+\( \frac{1}{n+1} \))(1+\( \frac{1}{n+2} \))(1+\( \frac{1}{n+3} \))...(1+\( \frac{1}{2n} \))(1+\( \frac{1}{2n+1} \))(1+\( \frac{1}{2n+2} \))=(1+\( \frac{1}{n+1} \))x
(2-\( \frac{1}{n+1} \))(1+\( \frac{1}{2n+1} \))(1+\( \frac{1}{2n+2} \))=(1+\( \frac{1}{n+1} \))x
(\( \frac{2n+1}{n+1} \))(\( \frac{2n+2}{2n+1} \))(\( \frac{2n+3}{2n+2} \))=(\( \frac{n+2}{n+1} \))x
(2n+3)=(n+2)x
x=(\( \frac{2n+3}{n+2} \))=(\( \frac{2n+4-1}{n+2} \))=(2-\( \frac{1}{n+2} \))=(2-\( \frac{1}{(n+1)+1} \)) q.e.d.