Also angenommen da steht:
$$ \frac{2^n\cdot (n!)^2}{(2n)!}=a_n $$
$$ \frac{2^{n+1}\cdot ((n+1)!)^2}{(2(n+1))!}=a_{n+1} $$
Demnach:
$$ \lim \limits_{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| $$
$$ \lim \limits_{n \rightarrow \infty}\left|\frac{\frac{2^{n+1}\cdot ((n+1)!)^2}{(2n+2)!}}{\frac{2^n\cdot (n!)^2}{(2n)!}}\right| \\ = \lim \limits_{n \rightarrow \infty}\left|\frac{2^{n+1}((n+1)!)^2(2n)!}{2^n(2n+2)!(n!)^2}\right| \\ = \lim \limits_{n \rightarrow \infty}\left|\frac{2((n+1)!)^2(2n)!}{(2n+2)!(n!)^2}\right| \\ = \lim \limits_{n \rightarrow \infty}\left|\frac{2((n+1)!)^2(2n)!}{(2n)!(2n+1)(2n+2)(n!)^2}\right| \\ = \lim \limits_{n \rightarrow \infty}\left|\frac{2((n+1)!)^2}{(2n+1)(2n+2)(n!)^2}\right| \\ = \lim \limits_{n \rightarrow \infty}\left|\frac{2(n+1)^2(n!)^2}{(2n+1)(2n+2)(n!)^2}\right| \\ = \lim \limits_{n \rightarrow \infty}\left|\frac{2(n+1)^2}{(2n+1)(2n+2)}\right| \\ = \lim \limits_{n \rightarrow \infty}\left|\frac{2(n+1)^2}{2(2n+1)(n+1)}\right| \\ = \lim \limits_{n \rightarrow \infty}\left|\frac{(n+1)^2}{(2n+1)(n+1)}\right| \\ = \lim \limits_{n \rightarrow \infty}\left|\frac{(n+1)}{(2n+1)}\right|$$
Welches Buch benutzt du?