Aloha :)
Ich kann deinen Berechnungen folgen bis:
$$F(\omega)=\int\limits_0^1\underbrace{t}_{=u}\cdot \underbrace{e^{-i\omega t}}_{=v'}\,dt+\int\limits_1^2 1\cdot e^{-i\omega t}\,dt$$Das erste Integral funktioniert mittels partieller Integration, das zweite kann man sofort hinschreiben:
$$F(\omega)=\left[\underbrace{t}_{=u}\cdot\underbrace{\frac{1}{-i\omega}e^{-i\omega t}}_{=v}\right]_{t=0}^1-\int\limits_0^1\underbrace{1}_{=u'}\underbrace{\frac{1}{-i\omega}e^{-i\omega t}}_{=v}dt+\left[\frac{1}{-i\omega}e^{-i\omega t}\right]_{t=1}^2$$$$\phantom{F(\omega}=\frac{e^{-i\omega}}{-i\omega}-\left[\frac{1}{(-i\omega)^2}e^{-i\omega t}\right]_{t=0}^1+\frac{e^{-2i\omega}}{-i\omega}-\frac{e^{-i\omega}}{-i\omega}$$$$\phantom{F(\omega)}=-\left(\frac{e^{-i\omega}}{-\omega^2}-\frac{1}{-\omega^2}\right)+\frac{e^{2i\omega}}{-i\omega}$$$$\phantom{F(\omega)}=\frac{e^{-i\omega}-1}{\omega^2}+\frac{i\,e^{-2i\omega}}{\omega}$$Das sieht auf den ersten Blick anders aus als bei dir...