Aufgabe: Stellen Sie die Lösungen jeweils in der Gaußschen Zahlenebene dar.
\( |z+1+j| \leq 2 \) und \( \operatorname{lm}(z)>0 \)
Problem/Ansatz:
ich habe keine Ahnung wie ich das lösen soll :(
bitte um Hilfe:)
Aloha :)
Ich rechne mit dem Quadrat des Betrages, um Wurzeln zu sparen:$$4\ge\left|z+1+i\right|^2$$$$\phantom{4}=(z+1+i)(z+1+i)^\ast$$$$\phantom{4}=(z+1+i)(z^\ast+1-i)$$$$\phantom{4}=zz^\ast+z^\ast+iz^\ast+z+1+i-iz-i-i^2$$$$\phantom{4}=zz^\ast+(z^\ast+z)+i(z^\ast-z)+2$$Mit \(z=x+iy\) erhalten wir weiter:$$\phantom{4}=(x+iy)(x-iy)+(x-iy+x+iy)+i(x-iy-(x+iy))+2$$$$\phantom{4}=x^2+y^2+2x-2i^2y+2$$$$\phantom{4}=x^2+2x+y^2+2y+2$$$$\phantom{4}=\left(x^2+2x+\underbrace{1-1}_{=0}\right)+\left(y^2+2y+\underbrace{1-1}_{=0}\right)+2$$$$\phantom{4}=(x+1)^2-1+(y+1)^2-1+2$$$$\phantom{4}=(x+1)^2+(y+1)^2$$Damit haben wir in der Gauß'schen Zahlenebene eine Kreisgleichung gefunden:$$\left(x+1\right)^2+\left(y+1\right)^2\le4$$Die Menge beschreibt also eine Kreisfläche mit Mittelpunkt \(M\left(-1\,|\,-1\right)\) und Radius \(2\). Der Rand gehört dazu, weil der Betrag \(\le2\) sein soll. Allerdings sind ist als Randbedingung noch \(y>0\) gegeben. Das heißt, von dem Kreis sieht man nur einen oberen Sektor:
https://www.wolframalpha.com/input/?i=%28x%2B1%29%5E2%2B%28y%2B1%29%5E2%3C%3D4+and+y%3E0
Vielen Dank :)
Du beantwortest wirklich alles sehr ausführlich ::)))
Hallo,
|z-(-1-j)|<2 beschreibt einen Kreis (ohne Rand) mit Radius 2 um den Mittelpunkt
z_0 =-1-j
Im(z) >0 schneidet alles weg, was unterhalb der Realteilachse liegt
Sieht so aus:
https://www.wolframalpha.com/input/?i=%28x%2B1%29%5E2%2B%28y%2B1%29%5E2%3C4+%3B+y%3E0
Ein anderes Problem?
Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos