hi
$$ (x^2\cos x)' = u'v+uv' \\ u = x^2, u' = 2x \\ v = \cos x, v' = -\sin x \\ (x^2\cos x)' = u'v+uv' = 2x \cos x -x^2 \sin x \\ (2^{z})' = z' \cdot 2^z ln(2) \\ z = x^2\cos x \\ z' = (x^2\cos x)' = 2x \cos x -x^2 \sin x \\ (2^{z})' = z' \cdot 2^z ln(2) = (2x \cos x -x^2 \sin x) \cdot 2^{x^2\cos x} ln(2) =\\ (2 \cos x -x \sin x)\cdot x \cdot 2^{x^2\cos x} \cdot ln(2) $$