0 Daumen
329 Aufrufe

Aufgabe:

Ich möchte eine partielle Ordnung auf den natürlichen Zahlen definieren.

Definition. Sei A eine Menge.
Eine (strikte) partielle Ordnung < über eine Menge A ist eine irreflexive und transitive binäre Relation über A.


Problem/Ansatz:

Was diese Relationseigenschaften bedeuten verstehe ich. Aber wie definiere ich mir jetzt konkret eine partielle Ordnung auf den natürlichen Zahl?

Reicht: R := <

Auf einem Übungsblatt habe ich R:= $$\{(x, y) \in A \times A | x < y\}$$ gefunden und wenn ich mir diese Relation für A := {1, 2, 3, 4} aufzeichne, sollte es richtig sein. Ist das eine partielle Ordnung für A := N^+?

Avatar von

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community