0 Daumen
501 Aufrufe

Aufgabe:

Sei f:R→R,g:R→R monoton, h:R→R periodisch. Zeigen Sie das Folgendes
(a) die Funktion f∘h ist periodisch,
(b) die Funktionen g∘g und g3 sind monoton,
(c) die Funktionen g∘h,h∘g und g2 können nicht monoton sein.


Problem/Ansatz:

a) ich hab versucht die Definitionen von Monotonie, Peirodizität und Verkettung zu schreiben und etwas von das anleiten.

wir haben die Periodizität von eine Funktion so definiert dass 2 Voraussetzungen erfüllt werden müssen

1) x +/- T soll in Definitionsmenge sein

2) f(x+T) = f(x)

d.h wir sollen zeigen dass f (h(x)+T) = f(h(x)) ist und seit h periodisch ist dann ist zu zeigen, dann h(x+T)=h(x), dann bleibt zu zeigen f(h(x+T) +T ) = f(h(x))

hier bin ich stecken geblieben und kann nicht mehr weiter

bei b) und c) brauche ich bitte eine Idee, bei c glaube ich reicht ein Gegenbeispiel zu finden aber was ist in b zu machen?

Danke euch

Avatar von

Werden die Funktionen geschachtelt oder schlicht multipliziert?

Wie sind diese Pünktchen zu lesen?

Ein anderes Problem?

Stell deine Frage