bei folgender Aufgaben benötige ich unbedingt Hilfe.
Sei \(X\) eine reelle Zufallsvariable mit Verteilungsfunktion \\F(t) = \mathbb{P}(X≤t)\) und die verallgemeinerte (rechtsstetige) Inverse von \(F\) definiert durch:
\( F^{-1}:[0,1] \to \bar{\mathbb{R}}\) mit \(u \mapsto \inf\{t \in \mathbb{R}| F(t)>u\}\)
Zeige (ohne Voraussetzungen an \(F\)) :
a) \(\{u|u < F(t)\}⊆\{u|F^{−1}(u)≤t\}⊆\{u|u≤F(t)\}\)
b) sei \(Z\) eine gleichmäßig auf \([0,1]\) verteilte Zufallsvariable. So ist \(X:=F^{−1}(Z)\) auf \(\mathbb{R}\) gemäß \(F\) verteilt.
Vielen Dank.