Aufgabe:
f(x)=e-x•e3x
Problem/Ansatz:
Ich habe die e Funktion mit der Produktregel abgeleitet und komme auf
f'(x)=-e-x•e3x+(e-x )•3•(e3x )
Wenn ich beide Funktionen im CAS Rechner überprüfe komme ich einmal auf 2•e2x für die eigentlich Funktion. Und für meine Ableitung kommt 4•e2x raus. Ich kann mir nicht erklären wieso es statt 2• bei meiner Ableitung 4• ist.
Hallo,
Du brauchst hier keine Produktregel.
Fass vor dem Ableiten zusammen.
allgemein gilt:
a^m *a^n= a^(m+n)
y= e^(2x)
y' =2 e^(2x)
Achso wow. In der Aufgabe steht extra das die Produktregel verwendet werden soll. Dankeschön
WICHTIG
Du mußt es so wie in der Aufgabe verlangt machen
u= e^(-x) v=e^(3x)
u' =- e^(-x) v'= 3 e^(3x)
allgemein
y' =u' v +u v'
y' = - e^(-x) e^(3x) + e^(-x) 3 e^(3x)
y' =e^(3x) ( - e^(-x) +3 e^(-x))
y' =e^(3x) *2 e^(-x)
y'= 2 e^(2x)
Warum benutzt du die Produktregel und nicht einfach eine Regel für Potenzrechnen vor dem Ableiten?
f(x)=e-x•e3x=e-x+3x=e2x .
Produktregel soll bei der Aufgabe verwendet werden.
Zusammenfassen und ableiten
f(x) = e^(-x)·e^(3·x) = e^(2·x)f'(x) = 2·e^(2·x)
Alternativ über Produktregel
f(x) = e^(-x)·e^(3·x)f'(x) = -e^(-x)·e^(3·x) + e^(-x)·3·e^(3·x) = (-1 + 3)·e^(-x)·e^(3·x) = 2·e^(-x)·e^(3·x)
Spätestens jetzt sollte man aber das Produkt zusammenfassen oder nicht?
Ein anderes Problem?
Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos