Hallo Anna,
das sieht doch schon gut aus.
Für die Nullstellen setzt du den Zähler Null. \(x_{12}=\pm\sqrt{40}\approx\pm6.32455532034\)
Hier erst einmal die Kurve:
Du siehst, dass die Kurve symmetrisch zur y-Achse verläuft. Das liegt daran, dass f(-x)=f(x) ist, da bei \(x^2\) das Vorzeichen von x egal ist.
Für \(x\to\pm\infty\) betrachtest du \(f(x)=\frac{120}{x^{2}+20}-2\). Der Bruch strebt gegen Null und -2 bleibt übrig. Die Gleichung der Asymptoten ist also y=-2. Das stimmt mit der Abbildung überein.
Für die Extrema brauchst du die erste Ableitung. Der Kurve entnimmt man, dass bei x=0 ein Maximum vorliegt. Das müsste bei der Rechnung auch herauskommen.
$$ f(x)=120\cdot(x^2+20)^{-1}-2 $$
$$ f'(x)= 120\cdot \underbrace{2x}_{\text{innere Ableitung}} \cdot \underbrace{(-1)\cdot(x^2+20)^{-2}}_{\text{äußere Ableitung}} =-\frac{240 x}{\left(20+x^{2}\right)^{2}} $$