Hallo,
dein Konfidenzintervall ist gegeben durch \([x_u,x_o]\), wobei \(x_u=\bar{x}+z_u\cdot \frac{s_x}{\sqrt{n}}\) und \(x_o=\bar{x}+z_o\cdot \frac{s_x}{\sqrt{n}}\). Durch das festgelegte Konfidenzniveau von 99% ergeben sich folgende Intervallgrenzen:$$x_u=x_u=\bar{x}+z_u\cdot \frac{s_x}{\sqrt{n}}=30+2.326350\cdot \frac{20}{\sqrt{18}}=40.967$$$$x_o=\bar{x}+z_o\cdot \frac{s_x}{\sqrt{n}}=30-2.326350\cdot \frac{20}{\sqrt{18}}=19.033$$ Hierbei sind \(z_u\) und \(z_0\) die z-transformierten Intervallgrenzen...
https://de.wikipedia.org/wiki/Standardnormalverteilungstabelle#Quantile
Noch als Hinweis:
Da die Normalverteilung symmetrisch und an der x-Achse gespiegelt ist, kann man einfach den Wert für die Obergrenze, durch das Drehen des Vorzeichens ermitteln!