Aloha :)
$$F=x_B\,g_1(x_B)-\frac{1}{2}x_D\,g_2(x_D)=x_B\,g_1(x_B)-\frac{1}{2}\left(\frac{g_2(x_D)}{3,5}\right)g_2(x_D)$$$$\phantom{F}=x_B\,g_1(x_B)-\frac{1}{7}g_2^2(x_D)=x_B\,g_1(x_B)-\frac{1}{7}g_1^2(x_B)$$$$\phantom{F}=x_B(-x_B+8)-\frac{1}{7}(-x_B+8)^2=-x_B^2+8x_B-\frac{1}{7}(x_B^2-16x_B+64)$$$$\phantom{F}=-\frac{8}{7}x_B^2+\frac{72}{7}x_B-\frac{64}{7}=\frac{1}{7}(72x_B-8x_B^2-64)$$Notwendige Bedingung für Extremwert:$$0=F'(x_B)=\frac{1}{7}(72-16x_B)\quad\Rightarrow\quad x_B=\frac{72}{16}=4,5$$Damit haben wir:$$C(4,5|3,5)\quad;\quad D(1|3,5)\quad;\quad F_{max}=14$$