Aloha :)
Die 3€ für das 1-te Los fallen sicher an.
Die 3€ für das 2-te Los fallen nur an, wenn das erste eine Niete war. Das passiert mit der Wahrscheinlichkeit \(\frac{9}{10}\).
Die 3€ für das 3-te Los fallen nur an, wenn die ersten 2 Lose Nieten waren. Das passiert mit der Wahrscheinlichkeit \(\left(\frac{9}{10}\right)^2\).
Die 3€ für das 4-te Los fallen nur an, wenn die ersten 3 Lose Nieten waren.Das passiert mit der Wahrscheinlichkeit \(\left(\frac{9}{10}\right)^3\).
Die erwarteten Gesamtkosten sind also:$$K=3€+\frac{9}{10}\cdot3€+\left(\frac{9}{10}\right)^2\cdot3€+\left(\frac{9}{10}\right)^3\cdot3€\approx10,32€$$
Eigentlich fehlt bei dieser Aufgabe noch die Angabe der Gesamtanzahl der Lose. Wenn Sophia nämlich ein Los gekauft hat und dieses eine Niete war, ändern sich die Wahrscheinlichkeiten für Gewinne und Nieten. Wenn es z.B. insgesamt 100 Lose wären, gäbe es zu Beginn 10 Gewinne und 90 Nieten. Ein Gewinn kommt also mit der Wk \(\frac{1}{10}\) und eine Niete mit der Wk \(\frac{9}{10}\). Jetzt wird eine Niete gekauft. Danach gibt es nur noch 99 Lose, 10 Gewinne und 89 Nieten. Die Wk für einen Gewinn ist dann also \(\frac{10}{99}\) und für eine Niete \(\frac{89}{99}\).