Aloha :)
Die Stammfunktion lautet korrekt:$$\int\frac{1}{x}\,dx=\ln|x|+\text{const}\quad;\quad x\ne0$$Die Betragsstriche bei der Logarithmusfunktion sind wichtig. Der Logarithmus ist nur für Werte \(x>0\) definiert. Das folgende Integral wäre daher ohne Betragsstriche nicht definiert:$$\int\limits_{-2}^{-1}\frac{1}{x}dx=\left[\ln(x)\right]_{-2}^{-1}=\ln(-1)-\ln(-2)\qquad\text{(knallt dir um die Ohren)}$$Beide Logarithmen liefern "Error" auf jedem Rechner. Trotzdem exisitert das Integral und mit den Betragsstrichen um das \(x\) kann man es korrekt berechnen.
Die Stammfunktion zu \(\frac{1}{x}\) bzw. \(x^{-1}\) merkst du dir am besten einfach, sie ist eine Besonderheit, weil sie von der Standard-Regel zur Integration von Potenzen abweicht:$$\int x^{n}dx=\frac{x^{n+1}}{n+1}+\text{const}\quad;\quad n\ne-1$$