t∈R bezeichnet den Typ des Parameters "t"
R=reelle Zahlen (1,2,3oder -1,-2 oder 2/3 )
reelle Zahlen=rationale Zahlen+irrationale zahlen
rationale Zahlen=alle "ganzen" und "negative" Zahlen und die Brüche
irrationale Zahlen:Zahlen mit unendlich vielen Nachkommastellen,die nicht periodisch sind
pi=3,14....
e^1=2,71828..
Wurzel(2)=+/-1,4142...
allgemeine Form der Parabel y=f(x)=a2*x²+a1*x+ao
Scheitelpunktform f(x)=a2*(x-xs)²+ys
Scheitelpunkt Ps(xs/ys) mit xs=-(a1)/(2*a2) und ys=-(a1)²/(4*a2)+ao
ft(x)=1*(x-t)²+t ist die Scheitelpunktform binomische Formel (x-b)²=x²-2*b*x+b²
(x-t)²=x²-2*t*x+t²=
ft(x)=1*(x²-2*t*x+t²)+t
ft(x)=1*x²-2*t*x+t²+t → ft(x)=1*x²(-2*t)*x+(t²+t) → a1=-2*t und ao=(t²+t)
Scheitelpunkt berechnen,weil der Scheitelpunkt bei einer Parabel die Extrema
xs=-(a1)/(2*a2) hier a2=1
xs=-(-2*t)/(2*1)=t
xs=t
ys=-(-2*t)²/(4*1)+(t²+t)=-4*t²/4+t²+t=-t²+t²+t
ys=t
Extrema bei Ps(xs/ys)=Ps(t/t) Maximum oder Minimum
f(x)=1*(x-(-2))²-2 also t=-2
~plot~1*(x-(-2))^2-2;[[-6|6|-5|10]];x=-2~plot~