fa(x) = a^2·x^2 - a·LN(x)
fa'(x) = 2·a^2·x - a/x
fa''(x) = a/x^2 + 2·a^2
Extremstellen fa'(x) = 0
2·a^2·x - a/x = 0 → x = √(1/(2·a))
f(√(1/(2·a))) = a/2 - a·LN(1/(2·a))/2 → TP(√(1/(2·a)) | a/2 - a·LN(1/(2·a))/2)
Wendestellen fa''(x) = 0
a/x^2 + 2·a^2 = 0 --> x = √(- 1/(2·a)) → Keine Wendepunkte