Aloha :)
Da bietet sich die 2-malige Anwendung der Regel von L'Hospital an. Du musst nur sicherstellen, dass Zähler und Nenner unabhängig voneinander beide gegen \(0\) oder beide gegen \(\pm\infty\) gehen. Im Folgenden soll \(\mapsto\) die Anwendung von L'Hospital bedeuten, das spart mir die Limes-Schreiberei:
$$\frac{x}{x-1}-\frac{1}{\ln x}=\frac{x\ln x-(x-1)}{(x-1)\ln x}\mapsto\frac{\ln x+1-1}{\ln x+\frac{x-1}{x}}=\frac{\ln x}{\ln x+1-\frac{1}{x}}$$$$\mapsto\frac{\frac{1}{x}}{\frac{1}{x}+\frac{1}{x^2}}=\frac{1}{1+\frac{1}{x}}\stackrel{(x\to1)}{\to}\frac{1}{1+1}=\frac{1}{2}$$